Design of Reactive Systems
Summer 2002

Prof. Dr. Stefan Leue
Institute for Computer Science
Albert-Ludwigs-Universität Freiburg

leue@uni-freiburg.de

Copyright © Stefan Leue 2002
Automata-based Model Checking

Part 6
Automata Models and Logics

♦ Automata
 ‣ operational requirements specifications and architectural design specification for reactive systems are often captured in automata-based formalisms
 – SDL
 • ITU-T Recommendation Z.100
 • (H)CEFSM-Modell with arbitrary data domains (ASN.1 abstract data type specification language) and unbounded message buffers
 – UML for Real-Time (UML-RT)
 • HCEFSM

♦ Logics
 ‣ to formalize more abstract, descriptive specifications we need a more abstract notation
 – use of logic to characterize abstract requirements
Example: Requirements Validation

- Requirements elicitation
- Requirements analysis and negotiation
- Requirements documentation and specification
- Negotiated and validated requirements

\[M \models L \]

"model checking"

Logic specification

Customer or user requirements (abstract)
Requirements Validation

L (abstract requirements)

M (operational requirements model)
Further Applications of Model Checking

- Does the design implement the requirements specification?
- Does an implementation satisfy its specification (design / requirements)?
 - "software model checking"

System design → Requirements → Design → Implementation → Integration → Maintenance
Model Checking Principle

♦ Example

› mutual exclusion
 – two processes, i = 1, 2
 – state - transition model
 • global state space of mutual exclusion algorithms, states S1, .., S9
 • transitions represent spontaneous, atomic actions on the global state space (interleaving semantics approach)
 – state propositions
 • n_i: process i is not in the critical section
 • t_i: process i tries to get access to the critical section
 • c_i: process i is in the critical section
Model Checking Principle

♦ A Mutual Exclusion System
Safety requirement
- There are never going to be two processes in the critical section at the same time

Formalization
- \(\neg (c1 \land c2) \)
Safety requirement

- validation principle: visit every state and check satisfaction of property
- if all states satisfy the property, then it is impossible to find an execution prefix that could be continued such that the property would be violated
Liveness Property

- *it is true in every state that every process will eventually enter the critical section*
- formalization
 - ♦ (c1 ∨ c2)
Liveness Property

- validation principle
 - visit every state and check, whether a cycle violating the condition can be found
 - i.e., not all infinite extensions of all finite prefixes satisfy the property
Response
- Once a process attempts to get access to the critical section, then it will eventually be granted access.

Formalisation
- \((t_1 \rightarrow \Diamond c_1) \land (t_2 \rightarrow \Diamond c_2)\)
Model Checking Principle

- Search Strategies
 - safety: depth-first-search
 - liveness: nested DFS

- General Strategies?
 - Model checking for arbitrary LTL formulae
Temporal Logic and Automata

♦ Relationship of Büchi-Automata and LTL
 ‣ LTL corresponds to counter-free Büchi-automata and *-free ω-regular expressions
 ‣ Büchi-automata are strictly more expressive than LTL formulae
 – comparison according to [Wolper]:

\[
\begin{array}{c|c|c}
\text{ETL} & \iff & \text{Not counter-free Büchi-automata} \\
\text{LTL} & \iff & \approx \omega\text{-regular languages} \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{Counter-free Büchi-automata} & \approx & \text{*-free } \omega\text{-regular languages} \\
\end{array}
\]
Temporal Logic and Automata

♦ Büchi-Automata vs. LTL

example:

even(p): Proposition p is true in every even numbered state of a state sequence

Büchi:

\[
\begin{array}{c}
\text{S1} \\
\text{p} \\
\text{S0}
\end{array}
\]

ω-reg: \((\Sigma p)^\omega\)

LTL (intuitive argument):

\[\phi: p \land (p \rightarrow \bigcirc \neg p) \land (\neg p \rightarrow \bigcirc p)\]

cannot fully characterize this property

let \(\sigma = \underbrace{p \mid p \mid p \mid \cdots}_{\text{even(p)}}\)

then \(\sigma \models \text{even(p)}\) and \(\sigma \not\models \phi\)

conclusion:

− properties that require repeated counting up to a constant n cannot be expressed in LTL
− Büchi automata can count modulo a constant n
− for every LTL formula there is an expressively equivalent Büchi-automaton
− for proofs see [Wolper]
Temporal Logic and Automata

♦ LTL Formulae and Equivalent Automata

\(\neg(c_1 \land c_2) \)

\(\diamondsuit (c_1 \lor c_2) \)
Temporal Logic and Automata

♦ LTL Formulae and Equivalent Automata

\[(p \rightarrow \diamond q) \iff (\neg p \lor \diamond q)\]

\[\diamond (p \land \neg q)\]
Temporal Logic and Automata

♦ LTL Formulae and Equivalent Automata

\[
(p \rightarrow (r \land q))
\]

\[
(p \rightarrow (r \lor q))
\]

\[
\lozenge(p \land (\neg r \lor q))
\]
Automata-based Model Checking

♦ Approach

- let S a specification
- let M a model
- let \(L(S) \) and \(L(M) \) the languages accepted by S and M, respectively
- M satisfies the specification S if
 \[L(M) \subseteq L(S) \]
Automata-based Model Checking

♦ Application to Requirements Validation

\[L(M) \subseteq L(S) \]
Automata-based Model Checking

♦ **Computing** $L(M) \subseteq L(S)$
 - let $\Sigma^\omega - L(S) = \text{comp}(L(S))$
 - then
 $$L(M) \subseteq L(S) \iff L(M) \cap \text{comp}((L(S)) = \emptyset$$
 - Büchi automata are closed under complement and intersection, i.e.,
 - there is always a B.A. representing $\text{comp}((L(S))$, and
 - there is always a B.A. representing $L(A) \cap \text{comp}((L(S))$

♦ **Computing** $L(M) \cap \text{comp}((L(S)) = \emptyset$
 - implementation variants
 - direct complementation of S: non-trivial operation (c.f. [Sistla, Vardi and Wolper])
 - direct specification of $\text{comp}(S)$
 - specify LTL formula φ, obtain $\neg \varphi$, translate $\neg \varphi$ into an equivalent B.A.
Automata-based Model Checking

♦ Existence of Counterexample

 ‣ \(L(M) \cap \text{comp}((L(S)) = \emptyset \)

 \(\Rightarrow \) A satisfies S

 ‣ \(L(M) \cap \text{comp}((L(S)) = C \neq \emptyset \)

 \(\Rightarrow \) C is counterexample for the non-satisfaction of S by M

 ‣ it can be shown that any word in C can be represented by an \(\omega \)-regular expression of the form \(uv^\omega \) where u and v are finite state of event sequences
Automata-based Model Checking

♦ Construction of the Intersection of Büchi Automata

- let
 \[M^1 = (Q^1, q_0^1, A, \delta^1, F^1) \] and
 \[M^2 = (Q^2, q_0^2, A, \delta^2, F^2) \]
 two Büchi automata

- the Büchi automaton accepting \(L(M^1) \cap L(M^2) \) can be defined as
 \[M^1 \cap M^2 = (Q^1 \times Q^2 \times \{0, 1, 2\}, (q_0^1, q_0^2, 0), A, \delta, Q^1 \times Q^2 \times \{2\}) \]
 such that \((<r_i, q_j, x>, a, <r_k, q_n, y>) \in \delta\) iff all of the following conditions hold:

 1. \((r_i, a, r_k) \in \delta^1\) and \((q_j, a, q_n) \in \delta^2\) (the transitions of the intersection automaton agree with the transitions of the operand automata)

 2. The third component of the state tuples can be computed as follows:
 * if \(x=0\) and \(r_k \in F^1\), then \(y = 1\)
 * if \(x=1\) and \(q_n \in F^2\), then \(y = 2\)
 * if \(x=2\) then \(y = 0\)
 * else, \(y=x\)
Automata-based Model Checking

Example (from [Clarke, Grumberg and Peled])

M₁

\[r₁ \quad a \quad b \quad r₂ \]

M₂

\[q₁ \quad b \quad a \quad q₂ \]

M₁ ∩ M₂

\[r₁,q₁,0 \quad a \quad r₂,q₁,0 \]

\[r₁,q₂,1 \quad a \quad r₂,q₁,0 \]

\[r₂,q₁,0 \quad b \quad r₁,q₂,0 \]

\[r₂,q₁,2 \quad b \quad r₁,q₂,0 \]
Automata-based Model Checking

Construction of the Intersection of Büchi Automata

- third component in state ensures that acceptance states of both operand automata M^1 and M^2 occur infinitely often in an accepting cycle
- a definition of $F = F^1 \times F^2$ would be insufficient since accepting cycles of only one of the operand automata would be accepted in the intersection
- third component of state:
 - from 0 to 1 when an accepting state of the first automaton is reached
 - from 1 to 2 when additionally an accepting state of the second automaton is reached (accepting state of the intersection)
 - from 2 to 0 in the next state
Automata-based Model Checking

♦ Emptyness Check for Büchi Automata

- let $M = (Q, q_0, A, \delta, F)$ a Büchi automaton
- let ρ a run on σ such that σ is being accepted by M
- ρ contains infinitely many accepting states from F
- since Q is finite, there is a suffix ρ' of ρ such that every state in ρ' occurs infinitely often
- Every state in ρ' is reachable from every other state in ρ'
 - i.e., the states in ρ' form part of a strongly connected component of M that is reachable from q_0
 - i.e., the problem $L(M) = \emptyset$ is equivalent to finding a strongly connected component within the state graph of M
- \rightarrow Tarjan’s depth first search, (DFS)
 - linear time in the size of M
 - derivation of counterexample
 - the members of the SCC form the infinitely often repeated suffix
 - the reachability path for the component from q_0 forms prefix
- more efficient for practical problems: nested DFS
Automata-based Model Checking

♦ Nested DFS

```
procedure emptiness
dfs(q₀);
terminate(false)
end procedure

procedure dfs1(q)
local q’;
hash(q);
for all successors q’ of q do
  if q’ not in hashtable then dfs1(q’)
  end if;
if q ∈ F then dfs2(q)
end if;
end do;
end procedure

procedure dfs2(q)
local q’;
flaq(q);
for all successors q’ of q do
  if q’ on dfs1-stack then terminate(true)
  else if q’ not flagged then dfs2(q’)
  end if;
end do;
end procedure
```
Automata-based Model Checking

♦ Nested DFS

♦ derivation of counterexample for \(\text{terminate(true)} \)
 – \(\text{dfs2}(s_1) \)
 – \(s_2 \) is found by dfs2 on dfs1-stack
 – counterexample construction:
Automata-based Model Checking

♦ Synchronous Product ([Holzmann 95])

 ‣ idea
 – let M a B.A. corresponding to the transition system that is to be validated
 – let L a B.A. corresponding to the property that is to be validated
 • transitions from L are labeled with propositional expressions referring to state variables of M
 • perform a matching between the states of M and the transitions of L

\[
\begin{align*}
\text{M: } s'_0, \ldots, s'_i=v, \ldots \\
\text{L: } s_0, \ldots, s_i=x, s_{i+1}=y, \ldots
\end{align*}
\]
Automata-based Model Checking

♦ Synchronous Product ([Holzmann 95])

idea

– goal: generate all accepting runs of L that are also accepting runs of M
– a run of L matches a run of M, if all states in L’s run match all states of M’s run
– An accepting run on L which matches a run on M describes an execution sequence corresponding to the (undesired) property expressed by L
– Absence of an accepting run of L, for which there is an accepting run on M, implies that the (undesired) property does not hold
Automata-based Model Checking

♦ Synchronous Product ([Holzmann 95])

Example

\[at_i \]

\[\neg at_i \]

\[x_1 \]

\[x_2 \]

\[x_3 \]

\[M \]

\[L \]

\[\text{wahr} \]

\[y_1 \]

\[y_2 \]

\[\neg at_i \]

\[\neg at_i \]

\[\neg at_i \]

\[(x_1, y_1) \]

\[(x_2, y_1) \]

\[(x_1, y_2) \]

\[(x_3, y_1) \]

\[(x_3, y_2) \]

\[P \]

\[\Diamond at_i \]

\[\neg at_i \]

Negation
Automata-based Model Checking

♦ Synchronous Product ([Holzmann 95])
 ‣ Example
 – Any run of the product automaton P corresponds to a run on M as much as to a run on L
 – Any accepting run on P hence corresponds to a run on M and an accepting run on L, which shows that the intersection of the languages accepted by M and L is not empty
Automata-based Model Checking

♦ Synchronous Product ([Holzmann 95])
   Example
   – the property expressed by L holds for M since the synchronous product P has an accepting cycle
 ‧ detected through nested DFS on P
   – counterexample: \((x_1, y_1), (x_3, y_1), (x_3, y_2), (x_3, y_2)\)
Automata-based Model Checking

♦ Synchronous Product ([Holzmann 95])

Example 2

No accepting run of P, hence the (undesired) property is not satisfied.
Bibliographic References