Decidable problems?

- **Acceptance** problem:
 - decide whether an automaton accepts a string
- **Equivalence** problem:
 - Decide whether two automata are equivalent, i.e. accept the same language
- **Emptiness testing** problem:
 - Decide whether the language of an automaton is empty
- Can be applied to
 - DFA, NFA, REX, PDA, CFG, TM, ...

The acceptance problem for DFAs

\[A_{DFA} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \} \]

Theorem

\(A_{DFA} \) is a decidable language

Proof

\[M = \text{"On input } \langle B, w \rangle, \text{ where } B \text{ is a DFA and } w \text{ is a string:} \]
\[1. \text{ Simulate } B \text{ on input } w. \]
\[2. \text{ If the simulation ends in an accept state, accept. If it ends in a nonaccepting state, reject."} \]
The acceptance problem for NFAs

\[A_{\text{NFA}} = \{ \langle B, w \rangle \mid B \text{ is an NFA that accepts input string } w \} \]

Theorem

\[A_{\text{NFA}} \text{ is a decidable language} \]

Proof

The emptiness testing problem for DFAs

\[E_{\text{DFA}} = \{ \langle A \rangle \mid A \text{ is DFA for which } L(A) = \emptyset \} \]

Theorem

\[E_{\text{DFA}} \text{ is a decidable language} \]

Proof

The acceptance problem for Regular Expressions

\[A_{\text{REX}} = \{ \langle R, w \rangle \mid R \text{ is a regular expression that generates input string } w \} \]

Theorem

\[A_{\text{REX}} \text{ is a decidable language} \]

Proof

The equivalence problem for DFAs

\[EQ_{\text{DFA}} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \} \]

Theorem

\[EQ_{\text{DFA}} \text{ is a decidable language} \]

Proof

Decidable problems for CF languages

$A_{\text{CFG}} = \{(G, w) | G \text{ is a CFG that generates input string } w\}$

Theorem

A_{CFG} is a decidable language

Proof

Relies on the following property:

If G is in Chomsky Normal Form, then any derivation of w has length at most $2|w|-1$

There are only finitely many derivations of length less than n

Theorem

$E_{\text{CFG}} = \{(G) | G \text{ is CFG for which } L(G) = \emptyset\}$

Proof

Determine for each variable whether that variable is capable of generating a string of terminals

$E_{\text{QCFG}} = \{(G, H) | G \text{ and } H \text{ are CFLs and } L(G) = L(H)\}$

Theorem

E_{QCFG} is not decidable

Proof

Follows later

The problem with adapting the proof for DFAs is that the class of context free languages is not closed under complementation or intersection!

Theorem

Every context free language is decidable

Proof

Let G be a CFG for A and design a TM M_G that decides A. We build a copy of G into M_G. It works as follows.

1. Run TM S on input (G, w)
2. If this machine accepts, accept; if it rejects, reject.
The halting problem

• There is a specific problem that is algorithmically unsolvable (undecidable), e.g. the halting problem

• Philosophical implications: computers are fundamentally limited

Diagonalization

• Georg Cantor 1873

• Measure the size of (infinite) sets

 Consider function \(f : A \rightarrow B \)

 - \(f \) is one-to-one if \(f(a) \neq f(b) \) whenever \(a \neq b \)

 - \(f \) is onto if for every \(b \in B \) there is an \(a \in A : f(a) = b \)

 - \(f \) is a correspondence if it is onto and one-to-one

Example: \(f : \mathbb{N} \) (natural numbers) \(\rightarrow \) \(E \) (even nat.)

\(f(n) = 2n \) is a correspondence

Both sets have the same size! A set is countable if it has the same size as \(\mathbb{Q} \)

\[\mathbb{Q} = \left\{ \frac{m}{n} \mid m, n \in \mathbb{N} \right\} \]

Theorem

\(\mathbb{Q} \) is countable

Proof idea

\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w \} \]

Theorem

\(A_{TM} \) is Turing recognizable

Proof

Consider \(U: (\text{Universal Turing Machine}) \)

On input \(\langle M, w \rangle \), where \(M \) is a TM and \(w \) a string

1. Simulate \(M \) on \(w \)

2. If \(M \) ever enters its accept state, \textit{accept,}
 if \(M \) ever enters its reject state, \textit{reject}

\(U \) loops when \(M \) does the halting problem:

Theorem \(A_{TM} \) is undecidable

shows that recognizers are more powerful than deciders

requires quite involved proof
The set of real numbers (have a decimal representation)

Theorem
The set is uncountable

Proof idea
We prove (by contradiction) that there is no correspondence between \mathbb{R} and \mathbb{N}
Assume that there were a correspondence f
We now construct an $x \in \mathbb{R}$ that is not paired with any element of \mathbb{N}
Choose the i-th fractional digit of x different from the i-th frac. digit of $f(i)$

*Example:

<table>
<thead>
<tr>
<th>n</th>
<th>$f(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.1414..</td>
</tr>
<tr>
<td>2</td>
<td>5.857..</td>
</tr>
<tr>
<td>3</td>
<td>0.888888..</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

So, $x \neq f(n)$ for all n

Theorem
Some languages are not Turing recognizable

Proof
There is a countable number of Turing Machines
(Each Turing Machine can be encoded in a string; the set of all strings over a finite alphabet is countable; not all strings need to encode legal TMs)

The set of all languages is uncountable

Therefore there is no correspondence between the set of all TMs and the set of all languages.
A language is co-Turing recognizable if it is the complement of a language that is Turing recognizable.

Theorem
A language is decidable if and only if it is both Turing-recognizable and co-Turing recognizable.

Proof
1. If A is decidable then A and \overline{A} Turing recognizable
 Trivial
2. If A and \overline{A} Turing recognizable then A is decidable
 Let M_1 and M_2 be TMs for A and \overline{A}
 Define M:
 On input w
 1. Run both M_1 and M_2 on w in parallel
 2. If M_1 accepts, then accept;
 If M_2 accepts, then reject;
 M decides A
 all strings are either in A or \overline{A}
 either M_1 or M_2 must accept any given string
 M always terminates with correct answer

Theorem
A_{TM} is not Turing-recognizable

Proof
A_{TM} is Turing-recognizable
If A_{TM} were also Turing-recognizable
Then A_{TM} would be decidable.