Mutual Exclusion

♦ Requirements for Mutual Exclusion Algorithms in Message-Passing Based Distributed Systems
 ‣ ME1: at most one process may execute in the critical section at any given point in time (safety)
 ‣ ME2: requests to enter or exit the critical section will eventually succeed (liveness)
 – impossible for one process to enter critical section more than once while other processes are awaiting entry
 ‣ ME3: if one request to enter the critical section is issued before another request (as per the → relation), then the requests will be served in the same order
Mutual Exclusion

♦ **Performance criteria to be used in the assessment of mutual exclusion algorithms**
 ‣ **bandwidth** consumed (corresponds to number of messages sent)
 ‣ **client delay** at each entry and exit
 ‣ **throughput**: number of critical region accesses that the system allows
 – here: measured in terms of the synchronization delay between one process exiting the critical section and the next process entering
Mutual Exclusion

♦ Central Server-based Algorithm
 ‣ central server receives access requests
 – if no process in critical section, request will be granted
 – if process in critical section, request will be queued
 ‣ process leaving critical section
 – grant access to next process in queue, or wait for new requests if queue is empty

♦ Properties
 ‣ satisfies ME1 and ME2, but not ME3 (network delays may reorder requests)
 ‣ two messages per request, one per exit, exit does not delay process
 ‣ performance and availability of server are the bottlenecks
Mutual Exclusion

♦ Ring-based Algorithm

- logical, not necessarily physical link: every process \(p_i \) has connection to process \(p_{(i+1) \mod N} \)
- token passes in one direction through the ring
- token arrival
 - only process in possession of token may access critical region
 - if no request upon arrival of token, or when exiting critical region, pass token on to neighbour
Mutual Exclusion

♦ Ring-based Algorithm

- satisfies ME1 and ME2, but not ME3
- performance
 - constant bandwidth consumption
 - entry delay between 0 and N message transmission times
 - synchronization delay between 1 and N message transmission times
Mutual Exclusion

On initialization
state := RELEASED;

To enter the section
state := WANTED;
Multicast request to all processes;
\(T := \) request’s timestamp;
Wait until (number of replies received = \(N - 1 \));
state := HELD;

On receipt of a request \(<T_i, p_i> \) at \(p_j \) \((i \leq j) \)
if (state = HELD or (state = WANTED and \((T, p_j) < (T_i, p_i) \)))
then
queue request from \(p_i \) without replying;
else
reply immediately to \(p_i \);
end if

To exit the critical section
state := RELEASED;
reply to any queued requests;

- Algorithm by Ricart and Agrawala
 - based on multicast
 - process requesting access multicasts request to all other processes
 - process may only enter critical section if all other processes return positive acknowledgement messages
 - assumptions
 - all processes have communication channels to all other processes
 - all processes have distinct numeric ID and maintain logical clocks
Mutual Exclusion

<table>
<thead>
<tr>
<th>Algorithm by Ricart and Agrawala</th>
</tr>
</thead>
<tbody>
<tr>
<td>if request is broadcast and state of all other processes is RELEASED, then all processes will reply immediately and requester will obtain entry</td>
</tr>
<tr>
<td>if at least one process is in state HELD, that process will not reply until it has left critical section, hence mutual exclusion</td>
</tr>
<tr>
<td>if two or more processes request at the same time, whichever process’ request bears lower timestamp will be the first to get N-1 replies</td>
</tr>
<tr>
<td>in case of equal timestamps, process with lower ID wins</td>
</tr>
</tbody>
</table>
Algorithm by Ricart and Agrawala

- p_3 not attempting to enter, p_1 and p_2 request entry simultaneously
- p_3 replies immediately
- p_2 receives request from p_1, timestamp(p_2) < timestamp(p_1), therefore p_2 does not reply
- p_1 sees its timestamp to be larger than that of the request from p_2, hence it replies immediately and p_2 is granted access
- p_2 will reply to p_1’s request after exiting the critical section
Algorithm by Ricart and Agrawala

- p_3 not attempting to enter, p_1 and p_2 request entry simultaneously
- p_3 replies immediately
- p_2 receives request from p_1, $\text{timestamp}(p_2) < \text{timestamp}(p_1)$, therefore p_2 does not reply
- p_1 sees its timestamp to be larger than that of the request from p_2, hence it replies immediately and p_2 is granted access
- p_2 will reply to p_1’s request after exiting the critical section
Mutual Exclusion

On initialization
 state := RELEASED;
To enter the section
 state := WANTED;
 Multicast request to all processes; processing of incoming requests deferred here
 T := request’s timestamp;
 Wait until (number of replies received = (N - 1));
 state := HELD;
On receipt of a request <T_i, p_i> at p_j (i ≤ j)
 if (state = HELD or (state = WANTED and (T, p_j) < (T_i, p_i)))
 then
 queue request from p_i without replying;
 else
 reply immediately to p_i;
 end if
To exit the critical section
 state := RELEASED;
 reply to any queued requests;

♦ Algorithm by Ricart and Agrawala
 algorithms satisfies ME1
 – two processes p_i and p_j can only access critical section at the same time in case they would have replied to each other
 – since pairs <T_i, p_i> are totally ordered, this cannot happen
 algorithms also satisfies ME2 and ME3
Mutual Exclusion

On initialization
 state := RELEASED;

To enter the section
 state := WANTED;
 Multicast request to all processes; \{ processing of incoming requests deferred here \}
 \begin{align*}
 T &:= \text{request's timestamp;} \\
 \text{Wait until (number of replies received} &= (N - 1)); \\
 \text{state} &:={ \text{HELD}};
\end{align*}

On receipt of a request \(<T_i, p_i>\) at \(p_j\) \((i \leq j)\)
 \begin{align*}
 &\text{if (state = HELD or (state = WANTED and (}\color{blue}{T, p_j} < (T_i, p_i))))) \\
 &\text{then} \\
 &\text{queue request from } p_i \text{ without replying;} \\
 &\text{else} \\
 &\text{reply immediately to } p_i;
 \end{align*}
 \text{end if}

To exit the critical section
 state := RELEASED;
 reply to any queued requests;

\begin{itemize}
\item Algorithm by Ricart and Agrawala
 \begin{itemize}
 \item performance
 \begin{itemize}
 \item getting access requires \(2(N-1)\) messages per request
 \item synchronization delay: just one round-trip time (previous algorithms: up to \(N\))
 \end{itemize}
 \end{itemize}
\end{itemize}
Mutual Exclusion

On initialization
state := RELEASED;

To enter the section
state := WANTED;
Multicast request to all processes;

processing of incoming requests deferred here
T := request’s timestamp;

Wait until (number of replies received = (N – 1));
state := HELD;

On receipt of a request <T_i, p_i> at p_j (i ≤ j)
if (state = HELD or (state = WANTED and (T, p_j) < (T_i, p_i)))
then
queue request from p_i without replying;
else
reply immediately to p_i;
end if

To exit the critical section
state := RELEASED;
reply to any queued requests;

♦ Algorithm by Ricart and Agrawala
 ‣ protocol improvements
 ‒ repeated entry of same process without executing protocol
 ‒ optimization possible to N messages per request
Mutual Exclusion

♦ Maekawa’s Voting Algorithm

 ♦ observation
 – to get access, not all processes have to agree
 – suffices to split set of processes up into subsets (“voting sets”) that overlap
 – suffices that there is consensus within every subset

 ♦ model
 – processes $p_1, .., p_N$
 – voting sets $V_1, .., V_N$ chosen such that $\forall \ i,k$ and for some integer M:

 $p_i \in V_i$

 $V_i \cap V_k \neq \emptyset$ (some overlap in every voting set)

 $| V_i | = K$ (fairness: all voting sets have equal size)

 each process p_k, is contained in M voting sets
Mutual Exclusion

♦ Maekawa’s Voting Algorithm
 ‣ protocol
 – to obtain entry to critical section, p_i sends request messages to all $K-1$ members of voting set V_i
 – cannot enter until $K-1$ replies received
 – when leaving critical section, send release to all members of V_i
 – when receiving request
 • if state = HELD or already replied (voted) since last request
 * then queue request
 • else immediately send reply
 – when receiving release
 • remove request at head of queue and send reply
Mutual Exclusion

♦ Maekawa’s Voting Algorithm

On initialization
 state := RELEASED; voted := FALSE;
For \(p_i \) to enter the critical section
 state := WANTED;
 Multicast request to all processes in \(V_i - \{p_i\} \);
 Wait until (number of replies received = \(K - 1 \));
 state := HELD;
On receipt of a request from \(p_i \) at \(p_j \) (\(i \neq j \))
 if (state = HELD or voted = TRUE)
 queue request from \(p_i \) without replying;
 else
 send reply to \(p_i \);
 voted := TRUE;
 end if
For \(p_i \) to exit the critical section
 state := RELEASED;
 Multicast release to all processes in \(V_i - \{p_i\} \);
On receipt of a release from \(p_i \) at \(p_j \) (\(i \neq j \))
 if (queue of requests is non-empty)
 then
 remove head of queue – from \(p_k \), say;
 send reply to \(p_k \);
 voted := TRUE;
 else
 voted := FALSE;
 end if

© Addison-Wesley Publishers 2000
Mutual Exclusion

♦ Maekawa’s Voting Algorithm

› optimization goal: minimize K while achieving mutual exclusion
 – can be shown to be reached when $K \sim \sqrt{N}$ and $M=K$
› optimal voting sets: nontrivial to calculate
 – approximation: derive V_i so that $|V_i| \sim 2\sqrt{N}$
 • place processes in a \sqrt{N} by \sqrt{N} matrix
 • let V_i the union of the row and column containing p_i
Mutual Exclusion

♦ Maekawa’s Voting Algorithm

- satisfies ME1
 - if possible for two processes to enter critical section, then processes in the non-empty intersection of their voting sets would have both granted access
 - impossible, since all processes make at most one vote after receiving request

- deadlocks are possible
 - consider three processes with
 - \(V_1 = \{p_1, p_2\}, V_2 = \{p_2, p_3\}, V_3 = \{p_3, p_1\} \)
 - possible to construct cyclic wait graph
 - \(p_1 \) replies to \(p_2 \), but queues request from \(p_3 \)
 - \(p_2 \) replies to \(p_3 \), but queues request from \(p_1 \)
 - \(p_3 \) replies to \(p_1 \), but queues request from \(p_2 \)
Mutual Exclusion

♦ Maekawa’s Voting Algorithm
 ‣ algorithm can be modified to ensure absence of deadlocks
 – use of logical clocks
 – processes queue requests in happened-before order
 – means that ME3 is also satisfied
 ‣ performance
 – bandwidth utilization
 • $2\sqrt{N}$ per entry, \sqrt{N} per exit, total $3\sqrt{N}$ is better than Ricart and Agrawala for $N>4$
 – client delay
 • same as for Ricart and Agrawala
 – synchronization delay
 • round-trip time instead of single-message transmission time in Ricart and Agrawala
Mutual Exclusion

Notes on Fault Tolerance

- none of these algorithms tolerates message loss
- ring-algorithms cannot tolerate single crash failure
- Maekawa’s algorithm can tolerate some crash failure
 - if process is in a voting set not required, rest of the system not affected
- Central-Server: tolerates crash failure of node that has neither requested access nor is currently in the critical section
- Ricart and Agrawala algorithm can be modified to tolerate crash failures by the assumption that a failed process grants all requests immediately
 - requires reliable failure detector